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The effect of Mach number on the evolution of instabilities in the compressible 
mixing layer is investigated. The full time-dependent compressible Navier-Stokes 
equations are solved numerically for a temporally evolving mixing layer using a 
mixed spectral and high-order finite difference method. The convective Mach number 
M ,  (the ratio of the velocity difference to the sum of the free-stream sound speeds) 
is used as the compressibility parameter. Simulations with random initial conditions 
confirm the prediction of linear stability theory that a t  high Mach numbers 
(M, > 0.6) oblique waves grow more rapidly than two-dimensional waves. Simula- 
tions are then presented of the nonlinear temporal evolution of the most rapidly 
amplified linear instability waves. A change in the developed large-scale structure is 
observed as the Mach number is increased, with vortical regions oriented in a more 
oblique manner a t  the higher Mach numbers. At convective Mach numbers above 
unity the two-dimensional instability is found to have little effect on the flow 
development, which is dominated by the oblique instability waves. The nonlinear 
structure which develops from a pair of equal and opposite oblique instability waves 
is found to  resemble a pair of inclined A-vortices which are staggered in the 
streamwise direction. A fully nonlinear computation with a random initial condition 
shows the development of large-scale structure similar to the simulations with 
forcing. It is concluded that there are strong compressibility effects on the structure 
of the mixing layer and that highly three-dimensional structures develop from the 
primary inflexional instability of the flow a t  high Mach numbers. 

1. Introduction 
The effect of compressibility on transition and turbulence in the two-stream 

mixing layer is the subject of much current research, prompted by the proposed 
development of propulsion systems based on supersonic combustion. The limiting 
process in such devices is believed to be the time taken to mix fuel and oxidizer in 
supersonic free shear layers. I n  this paper we consider the effect of compressibility on 
a plane mixing layer which is a prototype free shear layer, amenable to study by 
experiment and numerical simulation. 

Early experiments (summarized by Birch & Eggers 1973) showed that the mixing- 
layer growth rate d&/dx (& is a measure of mixing-layer width and x is the streamwise 
coordinate) was strongly reduced as the Mach number increased. Brown & Roshko 
(1974) showed that this reduction in growth rate was not due to the effects of density 
ratio, and hence that a true compressibility effect was being observed. A 
dimensionless Mach number has been introduced by Bogdanoff (1983) and by 
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Papamoschou & Roshko (1986, 1988) which appears to collapse the available 
experimental data onto a single curve of growth rate against Mach number. 
Following the nomenclature of Papamoschou & Roshko (1988) we call the 
compressibility parameter the convective Mach number M,, defined by 

where U,  and U, are the free-stream velocities, c1 and c2 are the free-stream sound 
speeds and we assume that the ratio of specific heats y is constant. For an 
explanation of the physical arguments behind (1 )  the reader is referred to 
Papamoschou & Roshko (1988). However, we should note that recent measurements 
of the convective velocities of organized structures in the compressible mixing layer 
(Papamoschou 1989) call into question some of these physical arguments. Further 
investigation is this area is needed. For the purpose of this paper we take (1) as a 
simple dimensionless Mach number that collapses the available experimental 
growth-rate data. 

Recent experiments have begun to document the large-scale structure of the 
compressible mixing layer. Clemens et al. (1990) showed how integrated methods 
such as schlieren can give a false impression of two-dimensionality in the mixing 
layer a t  M ,  = 0.6. In  a continuation of this work Clemens & Mungal ( 1990) compared 
the structure at three separate convective Mach numbers. They found a two- 
dimensional ‘ roller ’ structure a t  M ,  = 0.28, while a t  M ,  = 0.62 and 0.79 the flow was 
much more three-dimensional. 

Numerical work on the compressible mixing-layer problem began with solutions of 
the linear stability problem. Lessen, Fox & Zien (1965, 1966) solved the temporal 
stability problem. They found compressibility to be stabilizing and also found 
‘supersonic’ modes of instability (modes with a phase speed supersonic relative to 
one or other of the free streams) a t  high Mach numbers. Gropengiesser (1969) solved 
the spatial stability problem for realistic base profiles of velocity and temperature 
and noted the strong amplification rate of oblique instability waves a t  high Mach 
numbers. Recent stability calculations have shown that the convective Mach 
number can to first order collapse the linear stability results, and that when one plots 
the spatial amplification rate of the most amplified instability wave (including 
oblique waves) one obtains a growth rate against convective Mach number curve 
very similar to the experiments (Ragab &, Wu 1988; Sandham & Reynolds 1990). 

Two-dimensional simulations of the compressible Navier-Stokes equations for the 
compressible mixing layer have been presented a number of times. These simulations 
(for example Lele 1989; Sandham & Reynolds 1989) show a strong reduction in 
mixing-layer growth rate as Mach number is increased. Above approximately 
M ,  = 0.7 the simulations show the development of weak shock waves, situated 
around the large-scale two-dimensional vortices that develop from the instability 
in the flow. The limitation of these simulations is clearly the imposed two-di- 
mensionality, especially since a t  the higher Mach numbers linear stability theory 
predicts that oblique waves are more rapidly amplified than two-dimensional waves. 

Two-dimensional simulations of the wall-bounded free shear layer have been 
presented by Eberhardt et al. (1988) and by Greenough et al. (1989). In  this case there 
can be many extra instability modes of the ‘acoustic ’ variety, similar to those found 
in the compressible boundary-layer problem (Mack 1984). The simulations to date 
have not shown any vortex roll-up developing from these instability modes, and 
hence no enhanced mixing capability. A linear stability analysis of the wall-bounded 
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FIGURE 1.  Schematic of the time-developing mixing layer. 

shear layer problem has recently been presented by Zhuang et al. (1990). The results 
appear to show that even the most unstable wall modes are less unstable than the 
oblique (subsonic) modes from the unbounded problem, though the authors do not 
comment on this. 

In  this paper we consider the nonlinear evolution of the key three-dimensional 
instability waves in the unconfined mixing layer. The objective is to identify the 
important physical effects of compressibility, in particular on the large-scale 
structure which develops from the primary instability in the flow. The method is a 
full time-dependent, three-dimensional solution of the Navier-Stokes equations. We 
begin with an overview of the numerical method and the key results from linear 
stability theory, and then proceed to simulations of the effects of Mach number on 
the nonlinear evolution of various combinations of instability waves. The generality 
of the results is checked by performing simulations with random initial conditions. 

2. Governing equations 
The computational domain for the time-developing mixing layer is shown on 

figure 1. The flow is periodic in the streamwise direction (x) and in the spanwise 
direction ( 2 )  (out of the page). The flow is unbounded in the normal (y) direction. 

We begin by defining a non-dimensionalization scheme, 

T* P* P* T = -  U* 

T: ’ P = -  P=- -2 
- qc’ P: ’ p: UT2’ 

where z1 are the Cartesian coordinates (x,y,z) ,  t is the time, ui are the velocity 
components (u,v,w),  p is the density, p the pressure, T the temperature, ,LA the 
viscosity and e the internal energy per unit mass. The superscript * refers to a 
dimensional quantity and the subscript 1 refers to the upper (y > 0) free stream. The 
reference lengthscale is 8Zo, the vorticity thickness of the initial velocity profile, 

where ti$ is the specified initial mean streamwise velocity profile. 
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Using this non-dimensional scheme the governing equations for continuity, 
momentum and energy become (Anderson, Tannehill & Pletcher 1984) : 

where the total energy E ,  = p(e + +ui u,). The non-dimensional constitutive re1at)ions 
for a Newtonian fluid with Fourier heat conduction are: 

where M ,  is the Mach number of the upper (y > 0) free stream M I  = U,*/c,*. 
The Reynolds number of the flow is defined by Re = P T U T S : ~ / ~ T ,  and the Prandtl 

number by Pr = c g p * / k * ,  where k* is the thermal conductivity. The viscosity is 
assumed to follow a power law, non-dimensionally p = 5'".67, where we have chosen 
the exponent for nitrogen (White 1974). The perfect-gas law in our non-dimensional 
scheme is 

In  all the simulations a passive scalar equation is also solved. The non-dimensional 
equation for a scalar f is 

where the Schmidt number Sc = ,u*/p*D* (D* is a diffusion coefficient) is assumed to 
be constant. The quantity pf can be thought of as the concentration per unit volume 
of a trace species. 

In all the computations we take the Prandtl number to be constant Pr = 1 and the 
Schmidt number Sc = 1 .  

3. Numerical methods 
We present a direct numerical simulation of the time-developing mixing-layer 

problem. That is to say, we solve the governing equations in their entirety, with no 
turbulence model. In  order t o  resolve the flow features we use spectral and high- 
order-accurate finite-difference methods. 

Time-advance of the computational variables (p ,  pui, E ,  and pf) is obtained by a 
fully explicit compact-storage Itunge-Kutta method (Wray 19%). The right-hand 
sides of the equations for these variables (equations (4), (5), (6) and (10)) rcquirc thc 
evaluation of derivatives of various quantities. Derivatives in the periodic directions 
x and B are readily obtained with a simple Fourier method : fast Fourier transform, 
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multiply by ik, where k is the wavenumber, and inverse transform. Derivatives in the 
non-periodic y-direction are obtained with a sixth-order modified Pad6 scheme (Lele 
1990). In  the y-direction we prefer not to  attempt a solution on an infinite domain, 
since we would not be able to resolve sound waves in the free stream. The method 
adopted here is to chop the computational domain at some y-location and impose 
non-reflecting boundary conditions. The basic idea of these boundary conditions, 
which were developed by Thompson (1987), is to consider the characteristic form of 
the Euler equations a t  the boundary. Outgoing characteristics use information from 
within the computational domain, and hence can be computed without manipulation. 
Incoming characteristics are handled by setting the time-derivative of their 
amplitude equal to zero, thus giving the boundary conditions their non-reflecting 
character. Details of the algorithmic implementation can be found in Sandham & 
Reynolds (1989), together with results from validation tests. 

During the course of our work various other numerical methods were implemented 
and tested. Initially it was considered likely that shock waves would form at the 
higher Mach numbers, so a class of ‘shock-capturing ’ numerical methods were 
investigated. Results from evaluation of these schemes, together with a simple 
MacCormack method, can be found in Sandham & Yee (1989). When it became 
apparent that shock waves were not a feature of the flow in three-dimensions a t  high 
Mach number, it was decided to sacrifice the shock-capturing capability and 
concentrate instead on the high spatial accuracy of the above scheme. 

The time-developing mixing layer develops from specified initial conditions. I n  
these computations we use a simple error function as the base velocity profile: 

tq, = erf(yn$ ( 1 1 )  

The initial mean temperature profile can be specified as a solution to the compressible 
boundary-layer energy equation (White 1974), assuming unity Prandtl number. For 
the antisymmetric mean velocity profile considered here? and with equal free-stream 
temperatures the general relation (see e.g. Sandham & Reynolds 1989) reduces to  

q = l+M+(l-a;). 2 

It is noted that for all the simulations presented here the convective Mach number 
M ,  is equal to the free-stream Mach number M I .  Uniform pressure is assumed for the 
initial mean flow (p,, = l ) ,  so the mean density profile is readily obtained from (9). 
Superimposed on the mean profiles are disturbances, which are either random noise 
or combinations of eigenfunctions from the linear stability analysis. The particular 
disturbances are described in later sections. The Reynolds and Mach numbers are 
specified for each simulation separately. 

The simulations were typically begun on a small (x, y, z )  mesh of (16 x 99 x 16), since 
relatively few Fourier modes are required in x and z to resolve the linear and slightly 
non-linear growth of the instabilities. As the flow became more nonlinear the number 
of Fourier modes in x and z was increased, with the mesh ending typically a t  
(96 x 99 x 96). The upper limit on the mesh size was fixed by the available storage on 
the Cray X-MP computer and by the amount of computer time (10-15 h) that we 
were prepared to  expend per simulation. The full number of points were required in 
the y-direction from the start of the simulation, in order to resolve the eigenfunctions. 
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4. Linear stability theory 
Linear stability theory was used to provide eigenfunctions of unstable waves, 

which were then used as initial conditions for the numerical simulations. It was also 
used to guide the choice of M ,  and Re for the simulations. In this section we give an 
overview of the results from inviscid temporal linear stability analysis of the time- 
developing mixing layer. Similar physical characteristics were found in the inviscid 
spatial stability analysis of the spatially developing mixing layer (Sandham & 
Reynolds, 1989, 1990). 

A parallel mean flow is assumed and the decomposition u = ii+u‘ is used 
(similarly for u’, w’, p’ and 5”’). Solutions to the linear equations have the form: 

7 (13) 

where a and p are wavenumbers in the x- and x-directions respectively and w is the 
disturbance frequency. The eigenfunction Zi is a function of the y-coordinate only. 
For the time-developing mixing-layer problem disturbances grow in time and not in 
space. Thus, the wavenumbers a and p are real quantities. The streamwise 
wavelength of a disturbance is given by L, = 2n/a, the phase speed by c, = w,/a,  
and the amplification rate by wi. 

At low Mach numbers (for M ,  < 0.6) the two-dimensional disturbance 8 = 0” 
(where tan 0 = P/a)  is the most unstable wave. The effect of M ,  on the growth rate 
wi of two-dimensional waves is shown on figure 2 ( a ) .  It can be seen that the 
amplification rate of these waves is strongly reduced as M ,  increases. By M ,  = 1.2 the 
maximum amplification rate for two-dimensional waves is only 10% of its 
incompressible value. 

In  the time-developing mixing layer, with an antisymmetric mean velocity profile 
and equal free-stream temperatures, the phase speed of the subsonic instability 
waves is zero. This can be seen from the plot of w, on figure 2 ( b ) .  Above M ,  = 1 we 
observe the presence of two new ‘supersonic’ instability waves, i.e. waves with a 
phase speed that is supersonic relative to one or other of the free streams. These 
waves are the most unstable waves in two dimensions above a convective Mach 
number of approximately 1.0. Numerical simulations of these waves (Sandham & 
Reynolds 1989) showed that the very small growth rates of these instabilities 
persisted in the nonlinear regime of disturbance growth. 

The linear stability picture is especially interesting in three dimensions. The 
amplification rate of unstable waves at various Mach numbers as a function of wave 
angle 8 is shown on figure 3. The most unstable wave was found for each M ,  as a 
function of a and 0. To produce the curves, the wavelength was fixed at that of the 
most unstable wave and the angle 0 was varied. The curves split into two regimes: 
for M ,  < 0.6 the two-dimensional instability wave is the most unstable wave, whilst 
for M,  > 0.6 an oblique wave is most unstable. It was found (Sandham & Reynolds, 
1989, 1990) that, especially for the case of equal free-stream temperatures, the angle 
of the most unstable inviscid linear instability wave above M ,  = 0.6 satisfied 

= &Ci(ax+/lz-rot) 

M ,  cost3 z 0.6. (14) 

Thus the obliquity of the most unstable wave increases as the Mach number 
increases. 

Large-scale structure in free-shear layers is intimately connected with the 
underlying instability of the flow. Brown & Roshko (1974) demonstrated that 
organized structure in the incompressible mixing layer persisted up to high Reynolds 
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FIGURE 2. The eigenvalue from inviscid temporal linear stability analysis: (a) w,, (b) w,. 
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FIGURE 3. Temporal inviscid linear growth rate w, as a function of wave angle 0. -, M ,  = 0.01, 
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numbers, even when the flow was statistically self-similar. Hence, the organized 
structures were not simply a remnant of the transition process. The primary 
structure observed in Brown & Roshko's photographs is a large two-dimensional 
roller, consistent with the underlying infexional (inviscid) instability of the mean 
flow, where the most unstable wave is two-dimensional. The inflexional instability 
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inviscid eigenfunction) as a function of Reynolds number and Mach number. 

has been proposed by Lesieur et al. (1988) as a mechanism for recreation of two- 
dimensionality, even after three-dimensionality has appeared in the incompressible 
mixing layer. There is evidence for a quantitative relationship between linear 
stability theory and mixing-layer growth rate (Sandham & Reynolds 1989, 1990). 
Mungal & Hollingsworth (1989) discuss evidence for organized structure in a 
different free shear flow, an extremely high Reynolds number jet. They also make the 
connection between organized structure and the underlying instability of the flow. 
With these points in mind, we consider a split of the Mach-number range into three 
approximate regimes with different instability characteristics, and hence probably 
different physical character and large-scale structure. 

(a )  0 < M ,  < 0.6: low-Mach-number regime 
The two-dimensional instability is the most rapidly amplified disturbance. 

Towards M ,  = 0.6 there are a wide range of waves of different orientations that are 
approximately equally amplified, so a trcnd towards three-dimensionality is 
expected. 

( b )  0.6 < M ,  < 1.0: increasing three-dimensionality 
In this range of Mach numbers an oblique wave is the most amplified wave, so the 

flow might be expected to have a strong three-dimensional character. However, the 
two-dimensional wave is still amplified and may have an effect. 

(c) M ,  > 1.0: oblique mode dominance 
I n  this region the two-dimensional instability is a factor of approximately 5 less 

rapidly amplified than thc most unstable oblique wave, and may be expected to have 
a minimal effect on the development of the flow. This region extends up to at least 
M ,  = 3.2, which was the highest Mach number for which the stability calculations 
were carried out (Sandham & Reynolds 1989). 

To complete this discussion of the growth of small-amplitude disturbances we 
present a series of three simulations at  various M,, with random initial conditions. 
The M ,  were selected to be 0.4,0.8 and 1.05, and the respective Re were 400, 600 and 
800. The choice of Re and M ,  was influenced by the nature of the linear instability. 
Figure 4 shows the growth rate of a particular small-amplitude disturbance (the two- 
dimensional inviscid eigenfunction) as a function of Re. The values of the growth rate 
were obtained by running the full Navier-Stokes code forward one time step and 
comparing the amplitude of the fundamental Fourier mode with the initial condition. 
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FIGURE 5. Mode energy E as a function of time for a simulation beginning with random initial 
conditions. 

It can be seen from the figure that a t  higher M ,  higher Re are needed in order to reach 
the asymptotic high-Re region, where we would ideally make our simulations. For 
this reason we choose higher Re a t  the higher M ,  and limit the highest M, to  1.05. This 
means that we are not able to compute so far into the nonlinear regime a t  higher M,. 
The computational box size was chosen to be 40 in both the streamwise and spanwise 
directions, and 10 in the normal direction. This box size allows approximately 5 of 
the most unstable waves a t  M, = 0.4, 3 a t  M ,  = 0.8 and 2 a t  M ,  = 1.05. The 
computations were carried out on a 32 x 33 x 32 grid, with an initial seeding of eight 
complex Fourier modes in x and z. The random noise was added in the following 
manner (cf. Lesieur et al. 1988). For example for the density p :  

p(x, y, 2) = p(x ,  y ,z) + ar e - c  (15) 

where a is the amplitude, chosen to be 0.0001 and r is a random number uniformly 
distributed between -0.5 and +0.5, different for each spatial location, and for each 
computational variable. The exponential term guarantees that disturbances decay in 
the free stream. 

The simulations were run through the linear region of disturbance growth, and 
then stopped. We define an energy E as 

where indicates a complex conjugate. The k, and k, will be taken as integer 
wavenumbers equal to the number of wavelengths contained in the computational 
box. For example ( 3 , O )  would be a two-dimensional wave, with wavelength &Lx. An 
example of the growth of energy in various modes is shown on figure 5 for the case 
M ,  = 0.4. The linearly unstable waves emerge from the background noise a t  around 
time t = 5.0. I n  this low-M, case the (5 ,O)  mode is the most unstable. These 
simulations were run a t  finite Re, so the mean flow thickens during the simulations. 
This effectively changes the reference lengthscale for the linear instabilities, and 
leads to the curvature of the modal energies shown on figure 5 .  The trend is to longer 
wavelengths being more rapidly amplified a t  later times in the simulations. 

For a simple look a t  the flow structure that is developing from the linear 
instabilities, we plot the w = 0 contour in the (x,x)-plane a t  y = 0. This contour 
separates fluid moving up from fluid moving down, and was found t,o reveal the 
general nature of the growing instability waves. The result is shown on figure 6 for 
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FIGURE 6. The contour v = 0 in a cut through the (2.2)-plane at y = 0 showing the orientation of 
instability waves that have grown out of random noise. through the linear region of disturbance 
growth' ( a )  M ,  = 0.4, ( b )  M ,  = 0.8 and ( c )  M ,  = 1.05. 

M, = 0.4,0.8 and 1.05. At M ,  = 0.4 (figure 6 u )  we find a clcar preference for spanwise- 
oriented structures to develop, as is expected from the dominance of the two- 
dimensional instability a t  low M,. At M ,  = 0.8 (figure 6 b )  and M, = 1.05 (figure 6 c )  
we observe a different behaviour. The orientation of the contour lines is in agreement 
with the linear stability theory, which predicts 45" a t  M, = 0.8 and 60" a t  M ,  = 1.05 
as the most rapidly amplified waves. 

These simulations also give some indication of possibilities for later nonlinear 
evolution of the flow. For example, a t  M, = 1.05 (figure 6 c )  we observe regions in the 
flow where one oblique wave dominates the other one (a single oblique line results), 
and regions where the oblique waves have comparable amplitudes (a checkerboard 
pattern of hills and valleys). 

From the above simulations of small-amplitude instability waves developing from 
random noise we conclude that there is a good qualitative agreement with linear 
stability theory. No evidence was found for any additional unstable modes, beyond 
those already known from linear stability analysis. 

5. Results from numerical simulations 
In this section we consider the effect of convective Mach number on the nonlinear 

evolution of various combinations of unstable waves. In  particular, the temporal 
development of a combination of a two-dimensional and a pair of oblique waves is 
considered. The initial condition for such a combination of waves can be written as 

(17) 
with similar perturbations for p', v', tof and T .  The disturbance amplitudes arc a,  and 
a2. The wavenumber in the streamwise direction is a = 2 x / L x  and in the spanwise 

u' = a, Re {,;(a, 0) ei(ax+$)} + a2 Rc {;(a, /I) ei(as+pz) + g(a, -p) ei(a*-flz) 1, 
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FIGURE 7. Surface of constant pressure, showing the developed large-scale structure at 
M ,  = 0.4; (a) bulging mode (4 = 0) and ( b )  translative mode (4 = 4.). 

direction p = 27c/L,, where L, and L, are wavelengths in the x- and z-directions 
respectively. The eigenfunctions came from the linear stability analysis and were 
normalized so that the peak magnitude of Zi was 1. The eigenfunction for the two- 
dimensional wave is Zi(a,O). For the equal and opposite oblique waves the 
eigenfunctions are &(a, /3) and &(a, -p). One need not consider the effect of a phase 
difference between the equal and opposite oblique waves since such a phase only 
moves the wave pattern around in space. The important phase is $, the phase 
difference between the two-dimensional wave and the pair of oblique waves. 

Four classes of simulations are described in the following sections. First, 
simulations of the low-Mach-number mixing layer, to find the combination of 
instability waves that gives experimentally observed phenomena. Second, forced 
simulations with a fixed pattern of initial disturbance, to  investigate the effect of 
Mach number on the mixing-layer structure. Third, forced simulations of the 
combinations of instability waves that are expected to be dominant a t  the higher 
Mach numbers, with the objective of identifying possible organized structure a t  high 
Mach number. Fourth, a simulation with random initial conditions to check the 
generality of the results. 

5. I. Low-Mach-number simulations 
The effect of the phase $ in (17) was first considered, with the objective of recovering 
the secondary instabilities of Pierrehumbert & Widnall(l982). Two simulations were 
run at M ,  = 0.4, Re = 400 with amplitudes a, = 0.05, a2 = 0.025, and phases 4 = 0 
and in. The computational box length was fixed at L, = 7.854, set by the most 
amplified two-dimensional wave from linear stability theory. There are two 
considerations behind the choice of L,. The secondary stability analysis of 
Pierrehumbert & Widnall suggests 56" as the most unstable secondary instability, 
though the peak is very broad. However, we initialized our simulations with linear 
eigenfunctions and the 0 = 56" disturbance, although inviscidly amplified, is initially 
damped a t  our Reynolds number. We preferred to have initially growing oblique 
disturbances, and so chose the compromise value 0 = 45", or L, = L,. The box size 
in the normal direction was chosen to  be L, = 10. 
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FIGURE 8. Surface of constant streamwise vorticity, showing the stretching of vorticitg into 
braids (M, = 0.4 and 4 = in). 

The particular secondary instability excited by the initial choice of 9 can be 
predicted from the eigenfunctions (Sandham & Reynolds 1989). Specifically, 9 = 0 
excites the ‘bulging ’ mode of instability and 4 = in excites the ‘ translative ‘ mode. 
The terminology is taken from Pierrehumbert & Widnall (1982). Figure 7 shows 
surfaces of constant pressure after the nonlinear growth of the instabilities for the 
two cases, with pressure level chosen as to enclose a region of low-pressure fluid. In 
all the cases considered in this paper a low-pressure region was associated with 
rotating fluid. This was checked by examining the passive scalar field, which clearly 
showed the motion of fluid that originated on one or other side of the mixing layer. 
Figure 7 ( a )  shows the large-scale rotational structure that developed from the 
simulation of the bulging mode of instability (4 = 0). In this case the core of the 
spanwise vortex has a diameter that  varies sinusoidally in the spanwise direction 
(recall that the simulations are periodic in x and z ) .  In agreement with Pierrehumbert 
& Widnall we find that this mode is only weakly amplified. The developed structure 
is a highly two-dimensional roller. The structure developing from the translative 
mode of secondary instability (9 = in) is shown on figure 7 ( b ) .  This mode is more 
amplified, and gives a final structure of a vortex core that oscillates, or ‘snakes’, in 
the spanwise direction. 

A perspective view of a surface of constant streamwise vorticity (figure 8) reveals 
an important feature of the simulation with 9 = an: the streamwise vorticity, that 
was initially placed in the saddle-point region between the vortex cores, has been 
stretched along the principal axis of strain into long thin regions of vorticity. In  our 
simulations, which all develop from small-amplitude instability waves, there is never 
enough circulation in these vortical regions to trigger the ‘collapse ’ process (a 
transition from vorticity into vortices) of Lin & Corcos (1984). The collapse would 
produce regions of low pressure, which would have shown up on the plot of pressure 
(figure 7 b ) .  Rogers & Moser (1989) performed incompressible computations of this 
phenomenon, and found behaviour similar to that found in our low-Mach-number 
simulations, when small-amplitude initial disturbances were used. They also 
reproduced the ‘ collapse ’ process of Lin & Corcos when high-amplitude initial 
disturbanccs were applied. 
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F I G U R E  9. Variation of vorticity thickness with time during simulations beginning with a 
two-dimensional wave and a pair of equal and opposite oblique waves. 

The conclusion of these low-Mach-number simulations is that the phase $ = an 
between a two-dimensional instability wave and a pair of equal and opposite oblique 
waves reproduces the main secondary instability of the incompressible mixing layer. 
This phase also places streamwise vorticity in the saddle-point region between 
successive rollers. Subsequent 'collapse ' of this vorticity would give the ex- 
perimentally observed 'braid' vortices (Bernal & Roshko 1986). Thus, $ = $ 
reproduces most of the important features of the low-Mach-number mixing layer. 

5.2. Effect of Much number 

For one particular combination of instability waves, we now consider the effect of 
Mach number. The case of a two-dimensional wave plus a pair of equal and opposite 
waves with $ = in was selected (see previous section). Convective Mach numbers 
of 0.4, 0.8 and 1.05 were selected, representative of the three regions of differ- 
ent instability character. At each Mach number the box length L, was fixed by the 
most unstable wavelength from linear stability analysis. At M ,  = 0.4 we have 
L, = L, = 7.85, again choosing the 0 = 45" oblique waves (see previous section). At 
M ,  = 0.8 we have L, = L, = 13.37. At this Mach number there is no problem in choos- 
ing the 0 = 45" oblique wave, since this is the most unstable wave. At M ,  = 1.05 we 
chose L, = 18.48 and L, = 12.465, since a 60" wave is the most unstable linear wave. 
The box size in the normal direction was selected to be L, = 10. Instability waves 
were added to the initial condition with a, = u2 = 0.025 (see (17)).  Reynolds numbers 
were chosen in the same manner as in the previous section : Re = 400 at M ,  = 0.4,600 
a t  M ,  = 0.8 and 800 at M ,  = 1.05. The simulations were run as far as possible into 
the nonlinear region, and were stopped when resolution on the finest grids (typically 
96 x 99 x 96) became a problem. A plot of the vorticity thickness evolution during 
the simulations is shown on figure 9. The reduction in growth rate due to compressi- 
bility is apparent. However, we still observe strong growth at the highest Mach 
number considered, contrary to two-dimensional computations (Sandham & 
Reynolds 1989) which show extremely slow growth a t  this Mach number. The sharp 
peak in the vorticity thickness at t = 18 (M, = 0.4) is associated with the saturation 
of the two-dimensional instability mode. However, in other simulations the vorticity 
thickness was found to  be a very sensitive measure of shear-layer thickness that was 
liable to strong fluctuations, independent of instability mode behaviour. 

We next consider the growth of the energy E(k,,  kz), defined in (16). Plots of E 



146 N .  D .  Sundham and W .  C .  Reynolds 

(a) 

E 

0 4 8 12 16 20 24 28 
1 

0 5 10 15 20 25 30 35 40 
i 

FIQURE 10. Variation of energy E in modes ( 1 , O )  ( 1 , i )  and ( 1 ,  - 1 )  as a function of time: 
(a) M ,  = 0.4, ( b )  M ,  = 0.8 and (c)  M, = 1.05. 

against time during the simulations are shown on figure lO(u-c) for each Mach 
number. We plot the energy in the two-dimensional wave ( 1 , O )  and the two oblique 
waves ( 1 , l )  and ( 1 ,  - 1).  Because of the symmetry in (17) the oblique waves grow a t  
exactly the same rate. At M ,  = 0.4 (figure 10u) i t  can be seen that the ( 1 , O )  wave is 
the most rapidly amplified wave initially, and always has more energy than the 
oblique waves. At M ,  = 0.8 (figure l o b )  the oblique waves ( 1 , l )  and 1 ,  - 1 )  are more 
rapidly amplified than the two-dimensional wave. Although they start with less 
energy, they soon overtake the ( 1 , O )  wave. At the highest Mach number M ,  = 1.05 
(figure 1Oc)  the oblique waves have a much stronger growth rate, and by the last time 
in the simulation they have an energy content well over an order of magnitude higher 
than the two-dimensional wave. 
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FIGURE 11. Surface of constant pressure showing the large-scale structure developing at 
(a)  M ,  = 0.4, ( b )  M ,  = 0.8 and (c)  M ,  = 1.05. 
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FIGURE 12. Surface of constant pressure showing the structure developing at M ,  = 0.8 with the 
phase Q = 0. 

The important conclusion from the plots of mode energy is that the general 
behaviour observed in the linear region of disturbance growth extends into the 
nonlinear region. The relative importance of two-dimensional and oblique waves, as 
predicted by linear stability theory, is also found in the nonlinear region. Dominance 
of oblique waves at the high Mach number M ,  = 1.05 is found in the nonlinear 
simulation as well as in the linear stability calculation. 

As described in the previous section, we can identify low-pressure regions in the 
flow with strong rotation. Therefore, pressure is a good method to identify large-scale 
structure. Perspective views of a surface of constant pressure, that encloses a region 
of strong rotation, are shown on figure 11 (a-c) for the flow field a t  the ends of the 
simulations a t  M ,  = 0.4, 0.8 and 1.05 respectively. A t  M ,  = 0.4 (figure l l a )  we find 
the translative mode of secondary instability, as discussed in the previous section. At 
M ,  = 0.8 (figure 1 1  b )  we find a weakening of the spanwise structure, which develops 
a larger amplitude of spanwise oscillation. We also find the development of oblique 
inclined vortices in the region between two spanwise rollers, where a t  low Mach 
number the streamwise ‘braid ’ vortices formed. By M ,  = 1.05 (figure 1 1  c) we find 
that the influence of the two-dimensional instability has nearly disappeared, and we 
are left with a pattern of four regions of rotating fluid. There is one pair of equal and 
opposite oblique vortices a t  the streamwise location x = 0, where at  low Mach 
number the spanwise roller formed, and another pair at the streamwise location 
x = s z ,  where a t  low Mach number the braid vortices formed. This high-Mach- 
number structure will be examined in more detail in the next section. 

It is noted that no shock waves formed in any of our three-dimensional simu- 
lations, even when the free-stream Mach number was supersonic (M, = M ,  = 1.05). 
Simulations with comparable Reynolds numbers in two-dimensions always de- 
veloped shocks above M ,  z 0.7. It appears that, when given the freedom to evolve 
in three dimensions, the mixing layer develops a structure without shock waves. 

The strong three-dimensionality observed in our simulations suggests a possible 
limitation of the simple model of the compressible mixing layer (Papamoschou & 
Roshko 1988). The model assumes a two-dimensional topological picture of the flow, 
with isentropic flow from the free streams to a stagnation point. Shock waves must 
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FIGURE 13. Surface of constant pressure showing model structures developing at M, = 0.8 from 
(a) a single oblique instability wave and ( b )  a pair of equal and opposite oblique instability waves. 

then be incorporated into the model to  explain measurements of convective velocity 
(Papamoschou 1989). It is speculated that in three dimensions the flow topology 
changes so that stagnation points are reached without the necessity of shock waves. 

To complete this section we consider the effect of phase at the intermediate Mach 
number M ,  = 0.8. The alternative phase is q5 = 0, which gave the slightly unstable 
‘bulging’ mode of secondary instability a t  low Mach number. The developed 
structure from a simulation with q5 = 0 (but with otherwise identical conditions to 
the above) is shown by means of a pressure surface on figure 12. The developed 
structure is different in detail, though just as three-dimensional as the structure 
which developed with q5 = in. Whilst it would be preferable to simulate many 
different phases between 0 and 2n, i t  is felt that  simulations with q5 = 0 and # = in 
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givc the essential phase effects, representing the two cases of streamwise vorticity 
initially in or out of phase with the spanwise roller. The trend toward obliquely 
oriented vortical regions is clear. At convective Mach numbers M ,  > 1 the two- 
dimensional wave is so weakly amplified that its phase will have little effect. 

5.3.  Structure at high Mach number 

Csing results from previous sections, we can make some predictions about the kind 
of large-scale structures which may develop out of flow instabilities in the mixing 
layer a t  high Mach number. We consider especially the region M ,  > 1, where the 
oblique instability waves are dominant. The kind of picture which may emerge from 
background noise was shown on figure 6 ( c )  for M ,  = 1.05. There were observed to be 
regions where one oblique wave dominated, and regions where the addition of two 
opposite oblique waves was important. To investigate the further development of 
such wave combinations, simulations were madc of a single oblique wave and of a 
combination of equal and oppositc oblique waves. A Mach number of M ,  = 0.8 was 
selected so that a lower Reynolds number Re = 400 could be used, in order to get 
further into the nonlinear development before running into resolution problems. 
Other parameters were chosen to be the same as for the M ,  = 0.8 simulation in the 
previous section. Results from this section are expected to apply to the higher-Mach- 
number regime M,. > 1, where more oblique waves are more unstable. 

The dcvcloped structure arising from a single oblique wave is, not surprisingly, a 
single oblique vortex. The structurcl developing from two equal and opposite oblique 
waves is more complex. Pressure surfaces at the final time in the simulations are 
shown on figure 13 (a ,  6 )  for the two eases. The structure developing from the pair of 
equal and opposite oblique instability waves (figure 136) contains four main regions 
of rotating fluid. ,4t x = 0 there are two counter-rotating vortices, inclined in y 
relative to the x-axis, and oblique in z relative to the x-axis. There are two more 
vortices at  x = ;IAz, similar to those at x = 0, but with the opposite sense of w, 
rotation. Each of the pairs of oblique vortices can be considered similar to the A- 
structures in transitional boundary-layer flow. The induccd motion of each leg on the 
other gives the inclined nature of the vortices. The vortices become more inclined as 
the simulation proceeds. The rotation a t  the heads of the A-structures is weak, and 
there is no suggestion of rotation of the head of one A-structure around the tail of the 
(inverted) A-structure beneath it. The structure can bc thought of as two vortex 
lines, passing through the peaks of vorticity. One line passcs through the vortices at 
x = 0. z = iLz and iLz, and thc other passes through the vortices at x = +I,,, z = iLz 
and iLz. The periodicity means that both vortex lines zigzag ad infiniturn in the span- 
wise direction. Perspective and top views of these vortex lines are shown on figure 14. 
The vortex lines are staggered in the streamwise direction, similar to the staggered 
A-vortices observed in boundary-layer transition (Herbert 1988). However, the 
boundary-layer case is a subharmonic secondary instability, whereas the case 
described here is a fundamental primary instability. 

The scalar field for the structure resulting from two equal arid opposite oblique 
waves is especially rich in detail. The scalar (or mixture fraction) f was originally 
specified by a hyperbolic tangent profile, and tags fluid from the free streams with 
a value of 0 (lower stream) or 1 (upper stream). We shall plot contours of the quantity 
f -0.5, with negative contours shown with dashed lines in ordcr to clearly distinguish 
between fluid from each side of the mixing layer. Thus, solid contours show fluid that 
originated on the upper side, and dashed contours show fluid that originated on the 
lower side. A cut through the (x, z )  plane at  y = 0 is shown on figure 15 ( a ) .  The four 
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FIGURE 14. Vortex lines passing through the vortex rores for the structure developing from a pair 
of equal and opposite oblique instability waves at M ,  = 0.8: ( a )  perspective view and ( b )  top view. 
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main rotational regions show clearly. The regions of strong scalar gradient a t  x = :IJx 
and iLx, z = +Lz and iLz are complex three-dimensional saddle points, where fluid 
from the free streams is brought to rest, and high pressure ensues. Cuts through the 
scalar in the (y, z)-plane a t  x = +Lx and x = sx are shown on figure 15 ( b ) .  Mushroom- 
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FIGURE 16. Plot of energy E of modes ( l , O ) ,  ( 1 , l )  and ( 1 ,  - 1 )  versus time for simulation 
beginning with random noise at M ,  = 0.8. 

shaped structures are found a t  the plane x = gZ due to the counter-rotating nature 
of the vortices. Cuts through the (x,y) plane of the scalar at z = $Lz and z = sz are 
shown on figure 15(c). The cut at z = $Lz might at first glance appear similar t o  the 
two-dimensional roller structure at low Mach numbers. Only examination of the 
other planar cuts reveals the highly three-dimensional structure of the flow field. This 
effect has been clearly demonstrated experimentally by Clemens et al. (1990). They 
studied a mixing layer at M ,  = 0.6 and showed how schlieren photography could give 
an illusion of two-dimensionality, when in reality the flow field was highly three- 
dimensional. 

The probability density function (p.d.f.) of the scalar is of much interest in 
combustion applications (see e.g. Mungal & Dimotakis 1984). Our simulations do not 
contain the small-scale eddies that are responsible for much of the mixing beyond the 
mixing transition. However, it is possible to make some limited inferences, based on 
the observed large-scale structure. In particular, the inclined nature of the A-vortices 
seems to make it possible for fluid to be locally mixed at some level other than that 
associated with the overall entrainment ratio. The heads of the A-vortices exist 
largely in one or other of the free streams, and may be expected to contain more 
fluid from that side of the mixing layer. The overall scalar p.d.f. would then have a 
lower peak at the entrainment ratio. It is unfortunately not possible from these 
simulations to quantify this effcct. 

5.4. Simulation with random initial conditions 
In this section we present results from a simulation conducted to check the generality 
of the findings of the previous sections. In particular, we would like to break the 
symmetry that was imposed by the choice of equal and opposite oblique waves. To 
do this, and to remove other possible biases, random noise was chosen as the initial 
condition. Unfortunately, numerical limitations prevent us from carrying the 
random noise simulations of $4, into the nonlinear regime. Therefore, the same 
restricted domain as for the forced simulations of $85.2 and 5.3 was used. Random 
noise was added to  the mean flow in the manner of (15), with an amplitude a = 0.025. 
The intermediate-Mach-number case M ,  = 0.8 was chosen for simulation, and other 
parameters were chosen to  be the same as for the simulation at this Mach number in 
$5.2. 

Figure 16 shows how the linearly unstable waves grow out of the random noise 
initial condition. This process appears to take about 5 time units. Clearly the extent 
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FIGURE 17.  Two-dimensional energy spectrum E(k,, k,) for the simulation starting with random 
noise at M ,  = 0.8: (a) t = 0, ( b )  t = 29.6, and (c) t = 52.0. 

to which different unstable modes are energized will depend upon the initial random 
number seed. For this particular case it is apparent that  the two-dimensional ( 1 , O )  
mode is only weakly energized, and that the oblique (1,l) mode is more strongly 
energized than the (1, - 1) mode. The symmetry between the oblique modes has been 
broken. 

We observe the progress of this simulation by making a carpet plot of the energy 
content E(k,, k,) for all the waves in the simulation, and by plotting an (x, 2)-cross- 
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FIGURE 18. Planar (x. z )  ruts through the pressure field at y = 0 showing organized structure 
developing from random noise : (a) t = 0. ( 6 )  t = 2!M. and (c) t = 32.0. 

section through the pressure field at y = 0. These plots are made at times t = 0, 29.6 
and 52.0 and shown on figures 17 and 18 respectively. The initial carpet plot of mode 
energies (figure 17a) is flat owing to the flat spcctrum of the random noise. By time 
t = 29.6 (figure 17b)  the low-frequency linearly unstable waves have been amplified 
and the high-frequency waves have been damped. The high-frequency component a t  
this time is partially a remnant of the original random noise, and partially due to the 
high-frequency Fourier modes needed to resolve the developing large-scale structure. 
A t  the final time (figure 17r)  we observe that the spectrum has filled out completely. 

The pressure sequence on figure 18 shows the development of organized large-scale 
structure in the flow. Initially (figure 18a) we have just  random noise. A t  t = 29.6 
(figure 18b) we see that structure is developing from the instabilities. with one of the 
oblique waves clearly in evidence. At the final time t = 52.0 (figure 18c) we see 
localized regions of low pressure, associated with the strongly rotating parts of the 
large-scale structure. 

The developed structure is perhaps best observed on a plot of a three-dimensional 
surface of constant pressure, as done in previous sections. This is shown on figure 19. 
The similarities with figures 11 ( b )  and 13 ( b )  are striking. We again have four regions 
of strong rotation. and these regions are inclined and oblique. The picture is most 
similar to the case in figure 13(b), where the structure developed from a pair of 
oblique waves, with no two-dimensional forcing. This is consistent with our 
observation that the two-dimensional wave was not strongly energized by the 
random number seed of this simulation. More surprising perhaps is that we do not see 
a dominance of one oblique wave over the over, even though they were energized 
diffcrently. The structure is much closer to figure 13 ( b )  than to figure 13 (a). This adds 
additional weight to the structure in figure 13 ( b )  being a representative large-scale 
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FIGURE 19. Surface of constant pressure showing the large-scale structure that developed from 
random noise initial conditions at Mc = 0.8. 

structure for the high-Mach-number mixing layer. One feature of experiments that 
may be important is that an oblique instability wave can reflect off the sidewalls. In 
this situation a wave may interact with itself, and thus tend to be more like our 
simulation of two equal and opposite oblique waves. 

Some comment is in order on the apparent ‘cleanliness’ of the simulations 
presented in this paper. The simulation presented in this section shows that the 
smoothness of the final pressure surfaces is due to the dominance of the primary 
instability in the flow, and not just because we impose clean initial conditions. I n  the 
later stages of the development of this flow, which unfortunately cannot be 
simulated at present, we would expect to find secondary instabilities developing on 
top of the structure of figure 13(b ) .  Eventually we would expect some kind of mixing 
transition (generation of small eddies and hence high mixing) taking place, similar to 
incompressible free shear flows. What we feel is important in a flow like the mixing 
layer, which is dominated by a strong inflexional instability, is that the instability 
process continues in the fully developed turbulent regime, and the same structure 
will continually reimpose itself a t  the largest scales. Thus, although we have only 
simulated the initial steps in the transition process, we believe the final large-scale 
structure would be similar in the fully developed turbulent state. 

6. Conclusions 
Three-dimensional direct numerical simulations of the full compressible Nav- 

ier-Stokes equations have been presented. A combination of spectral and high-order 
accurate finite-difference methods was used to achieve high spatial resolution. 

Simulations of the linear region of disturbance growth, using random noise as the 
initial condition, confirmed some earlier linear stability results. Oblique waves were 
found to be the most rapidly amplified instabilities for convective Mach numbers 
above 0.6. No evidence was found for any other unstable waves, besides those already 
known from the linear stability analysis. 

At low Mach number (Me = 0.4) we were able to reproduce the incompressible 
secondary instability characteristics of Pierrehumbert) & Widnall ( 1982). Specifically, 

6 F L I  224 
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by choosing the phase of a two-dimensional instability wave relative to a pair of 
equal and opposite oblique waves, the ‘bulging’ and ‘translative’ modes of 
secondary instability were found. In agreement with Pierrehumbert & Widnall we 
found strong instability only with the translative mode. 

Using a fixed combination of instability waves (a two-dimensional wave and a pair 
of equal and opposite oblique waves, with phase fixed to give the translative mode 
of secondary instability) the effect of Mach number was investigated. A change was 
observed in the large-scale structure that develops in the nonlinear stage of 
instability growth. The low-Mach-number structure of a strong two-dimensional 
roller, with streamwise ‘braid’ vortices in between, disappeared at  higher Mach 
numbers. Strong oblique and inclined regions of rotation were found a t  the higher 
Mach numbers of M ,  = 0.8 and 1.05. The nonlinear growth of instabilities followed 
the linear trends, with oblique modes dominant in the nonlinear evolution at  high 
Mach number. 

No shock waves were found in these three-dimensional simulations, even at  Mach 
numbers where shock waves did form in comparable two-dimensional simulations. 
Whilst it is not possible to say that there will never be shock waves, it does appear 
that the flow topology is able to change in a three-dimensional manner a t  the higher 
Mach numbers to make shock waves unnecessary. 

Model large-scale structures for the mixing layer a t  high Mach numbers (M,  > 1) 
were proposed, based on the nonlinear development of a single oblique wave, or a 
pair of equal and opposite oblique waves. The former gives a single oblique vortex, 
while the latter yields a complex three-dimensional structure that can be thought of 
as a pair of A-vortices, staggered in the streamwise direction. A simulation with 
purely random initial conditions gave a structure very similar to the model structure 
developing from a pair of equal and opposite oblique waves. 

There are several implications from our work that warrant further investigation. 
The change in large-scale structure found a t  high Mach numbers may lead to 
different mixing characteristics a t  high Mach numbers. In  particular, it is considered 
possible that the scalar probability density function will have a different form a t  
higher Mach numbers. Also, there must be some kind of subharmonic merging 
process a t  the higher Mach numbers ; an analogue to the low-Mach-number two- 
dimensional ‘ pairing ’ process must exist for the complex double-A structures. 
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